Canadians Electrical Generator

Richard Willis.   On 28th May 2009 a European Patent application was filed by Richard Willis, entitled “Electrical Generator”. During a TV interview, Richard stated that his design has COP=3600. Available commercially from his Canadian company and sold under the name “Magnacoster”, early in 2010 his advertised pricing is US $4,200 for a unit which has four separate 100 amp 12V outputs, giving a combined maximum output power of 4.8 kilowatts. A larger unit is priced at US $6,000 with four separate 24V outlets providing a 9 kilowatt combined output. The house-powering unit which is supplied with a 12 kilowatt inverter to provide mains AC power and which gets connected direct to the circuit-breaker box of the house, is priced at US $15,000. One particularly interesting statement made by Richard is that the output power is at a higher frequency than the input power. He suggests that the electrical signal bounces around inside the device, multiplying the power as it goes and giving the output higher voltage and higher current than the input. The design of the device is most interesting as it is very simple. It is shown in his patent application WO 2009065219, a somewhat reworded copy of which is included in the Appendix to this eBook. Richard’s web site is here. However, while Richard’s designs do indeed work, he appears to be experiencing problems with the output wiring melting due to the very high current, and more importantly, the generation of high levels of unwanted electromagnetic radiation. These problems appear to have prevented him from supplying any commercial units at this time.

The circuit is based on a pulsed coil and two magnets and it has a number of unusual features. The power supply is unusual:

Richard arranges it like this so that either DC or AC can be used as the input power and so he follows that arrangement with a diode bridge, followed by two more diodes as shown here:

This is an interesting arrangement when the input is DC as it would be a more usual arrangement to have the diode bridge only in the AC input section and not included for the DC input where it just drops the input voltage and wastes electrical power unnecessarily. Still, that is the way it is shown in the patent, so that is the way it is shown here.

The input power supply is fed to an electromagnet but is converted into a pulsed supply by the use of an interrupter switch which may be mechanical or electronic:

As can be seen, the arrangement is particularly simple although it is an unusual configuration with the electromagnet core touching one of the permanent magnets and not the other. The magnet and electromagnet poles are important, with the permanent magnet North poles pointing towards the electromagnet and when the electromagnet is powered up, it’s South pole is towards the North pole of the permanent magnet which it is touching. This means that when the electromagnet is powered up, it’s magnetic field strengthens the magnetic field of that magnet.

There is a one-centimetre gap at the other end of the electromagnet and it’s North pole opposes the North pole of the second permanent magnet. With this arrangement, each electromagnet pulse has a major magnetic effect on the area between the two permanent magnets. In the diagram shown above, just a few turns of wire are shown on the electromagnet core. This is just for clarity and it does not mean that only a few turns should be used. The strength of the magnets, the electromagnet wire thickness and number of turns are related to each other and experimentation will be needed to determine the best combination.

The energy take-off from this device is shown here:

Richard states that the input power can be anywhere from under one volt to one million volts while the input current can be anything from under one amp to one million amps, so he clearly envisages a major range of constructions and components. The core material for the electromagnet is specified as ferrite, mumetal, permalloy, cobalt or any non-permeable metal material. It seems likely that iron filings embedded in epoxy resin is likely to be a suitable material as it can respond very rapidly to sharp pulses and it seems clear that in common with almost every other similar free-energy device, the rapidity of rise and fall of the power pulse is of major importance. Having said that, Richard states that the frequency of pulses in the output section is greater than the frequency of pulses applied to the input section. From this it seems likely that the device should be tuned so that the input pulses should be at a lower harmonic of the resonant frequency of the device..

A second version of the circuit looks like a modification of the John Bedini pulsed rotor battery charging circuit with a rotor substituting for the second permanent magnet:

This enhances the operation of the Bedini device by providing an initial magnetic field in the coil.

Silverhealtheu.   One of the EVGRAY yahoo forum members whose ID is ‘silverhealtheu’ has described a simple device which appears to be not unlike the Richard Willis generator above.

The device consists of an iron bar one inch (25 mm) in diameter and one foot (300 mm) long. At one end, there is a stack of five neodymium magnets and at the opposite end, a single neodymium magnet. At the end with the five magnets, there is a coil of wire which is strongly pulsed by a drive circuit. Down the length of the bar, a series of pick-up coils are positioned. Each of these coils picks up the same level of power that is fed to the pulsing coil and the combined output is said to exceed the input power.

Advertisements
  1. Everyone loves it when people get together and share views.
    Great site, continue the good work!

  2. 149692 821508Hey, you?re the goto expert. Thanks for haingng out here. 402358

  3. I found this site very interesting and I just wanna thanks for that. I hope you keep up the great work!

  1. No trackbacks yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: